A Table of Negative Powers of Two

Here is a table of the first 64 negative powers of two (from 2-1 to 2-64), shown in decimals:

n 2n
-1 0.5
-2 0.25
-3 0.125
-4 0.0625
-5 0.03125
-6 0.015625
-7 0.0078125
-8 0.00390625
-9 0.001953125
-10 0.0009765625
-11 0.00048828125
-12 0.000244140625
-13 0.0001220703125
-14 0.00006103515625
-15 0.000030517578125
-16 0.0000152587890625
-17 0.00000762939453125
-18 0.000003814697265625
-19 0.0000019073486328125
-20 0.00000095367431640625
-21 0.000000476837158203125
-22 0.0000002384185791015625
-23 0.00000011920928955078125
-24 0.000000059604644775390625
-25 0.0000000298023223876953125
-26 0.00000001490116119384765625
-27 0.000000007450580596923828125
-28 0.0000000037252902984619140625
-29 0.00000000186264514923095703125
-30 0.000000000931322574615478515625
-31 0.0000000004656612873077392578125
-32 0.00000000023283064365386962890625
-33 0.000000000116415321826934814453125
-34 0.0000000000582076609134674072265625
-35 0.00000000002910383045673370361328125
-36 0.000000000014551915228366851806640625
-37 0.0000000000072759576141834259033203125
-38 0.00000000000363797880709171295166015625
-39 0.000000000001818989403545856475830078125
-40 0.0000000000009094947017729282379150390625
-41 0.00000000000045474735088646411895751953125
-42 0.000000000000227373675443232059478759765625
-43 0.0000000000001136868377216160297393798828125
-44 0.00000000000005684341886080801486968994140625
-45 0.000000000000028421709430404007434844970703125
-46 0.0000000000000142108547152020037174224853515625
-47 0.00000000000000710542735760100185871124267578125
-48 0.000000000000003552713678800500929355621337890625
-49 0.0000000000000017763568394002504646778106689453125
-50 0.00000000000000088817841970012523233890533447265625
-51 0.000000000000000444089209850062616169452667236328125
-52 0.0000000000000002220446049250313080847263336181640625
-53 0.00000000000000011102230246251565404236316680908203125
-54 0.000000000000000055511151231257827021181583404541015625
-55 0.0000000000000000277555756156289135105907917022705078125
-56 0.00000000000000001387778780781445675529539585113525390625
-57 0.000000000000000006938893903907228377647697925567626953125
-58 0.0000000000000000034694469519536141888238489627838134765625
-59 0.00000000000000000173472347597680709441192448139190673828125
-60 0.000000000000000000867361737988403547205962240695953369140625
-61 0.0000000000000000004336808689942017736029811203479766845703125
-62 0.00000000000000000021684043449710088680149056017398834228515625
-63 0.000000000000000000108420217248550443400745280086994171142578125
-64 0.0000000000000000000542101086242752217003726400434970855712890625

(Check out “Patterns in the Last Digits of the Positive Powers of Five” to learn about the pattern in the trailing digits.)

Here are the same powers of two, shown in fractions:

n 2n
-1 1/2
-2 1/4
-3 1/8
-4 1/16
-5 1/32
-6 1/64
-7 1/128
-8 1/256
-9 1/512
-10 1/1,024
-11 1/2,048
-12 1/4,096
-13 1/8,192
-14 1/16,384
-15 1/32,768
-16 1/65,536
-17 1/131,072
-18 1/262,144
-19 1/524,288
-20 1/1,048,576
-21 1/2,097,152
-22 1/4,194,304
-23 1/8,388,608
-24 1/16,777,216
-25 1/33,554,432
-26 1/67,108,864
-27 1/134,217,728
-28 1/268,435,456
-29 1/536,870,912
-30 1/1,073,741,824
-31 1/2,147,483,648
-32 1/4,294,967,296
-33 1/8,589,934,592
-34 1/17,179,869,184
-35 1/34,359,738,368
-36 1/68,719,476,736
-37 1/137,438,953,472
-38 1/274,877,906,944
-39 1/549,755,813,888
-40 1/1,099,511,627,776
-41 1/2,199,023,255,552
-42 1/4,398,046,511,104
-43 1/8,796,093,022,208
-44 1/17,592,186,044,416
-45 1/35,184,372,088,832
-46 1/70,368,744,177,664
-47 1/140,737,488,355,328
-48 1/281,474,976,710,656
-49 1/562,949,953,421,312
-50 1/1,125,899,906,842,624
-51 1/2,251,799,813,685,248
-52 1/4,503,599,627,370,496
-53 1/9,007,199,254,740,992
-54 1/18,014,398,509,481,984
-55 1/36,028,797,018,963,968
-56 1/72,057,594,037,927,936
-57 1/144,115,188,075,855,872
-58 1/288,230,376,151,711,744
-59 1/576,460,752,303,423,488
-60 1/1,152,921,504,606,846,976
-61 1/2,305,843,009,213,693,952
-62 1/4,611,686,018,427,387,904
-63 1/9,223,372,036,854,775,808
-64 1/18,446,744,073,709,551,616
Dingbat

One comment

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

(Cookies must be enabled to leave a comment...it reduces spam.)

Copyright © 2008-2024 Exploring Binary

Privacy policy

Powered by WordPress

css.php