Print Precision of Dyadic Fractions Varies by Language

Interestingly, programming languages vary in how much precision they allow in printed floating-point fractions. You would think they’d all be the same, allowing you to print as many decimal places as you ask for. After all, a floating-point fraction is a dyadic fraction; it has as many decimal places as it has bits in its fractional representation.

Consider the dyadic fraction 5,404,319,552,844,595/253. Its decimal expansion is 0.59999999999999997779553950749686919152736663818359375, and its binary expansion is 0.10011001100110011001100110011001100110011001100110011. Both are 53 digits long. The ideal programming language lets you print all 53 decimal places, because all are meaningful. Unfortunately, many languages won’t let you do that; they typically cap the number of decimal places at between 15 and 17, which for our example might be 0.59999999999999998.

Continue reading “Print Precision of Dyadic Fractions Varies by Language”

Ten Ways to Check if an Integer Is a Power Of Two in C

To write a program to check if an integer is a power of two, you could follow two basic strategies: check the number based on its decimal value, or check it based on its binary representation. The former approach is more human-friendly but generally less efficient; the latter approach is more machine-friendly but generally more efficient. We will explore both approaches, comparing ten different but equivalent C functions.

Continue reading “Ten Ways to Check if an Integer Is a Power Of Two in C”

What Powers of Two Look Like Inside a Computer

A power of two, when expressed as a binary number, is easy to spot: it has one, and only one, 1 bit. For example, 1000, 10, and 0.001 are powers of two. Inside a computer, however, numbers are more generally represented in binary code, not as “pure” binary numbers. As a result, you may not be able to look at the binary representation of a number and tell at a glance whether it’s a power of two or not; it depends on how it’s encoded.

Continue reading “What Powers of Two Look Like Inside a Computer”