The exact decimal equivalent of an arbitrary double-precision binary floating-point number is typically an unwieldy looking number, like this one:

0.1000000000000000055511151231257827021181583404541015625

In general, when you print a floating-point number, you don’t want to see all its digits; most of them are “garbage” in a sense anyhow. But how many digits do you need? You’d like a short string, yet you’d want it long enough so that it identifies the original floating-point number. A well-known result in computer science is that you need 17 significant decimal digits to identify an arbitrary double-precision floating-point number. If you were to round the exact decimal value of any floating-point number to 17 significant digits, you’d have a number that, when converted back to floating-point, gives you the original floating-point number; that is, a number that round-trips. For our example, that number is 0.10000000000000001.

But 17 digits is the worst case, which means that fewer digits — even as few as one — could work in many cases. The number required depends on the specific floating-point number. For our example, the short string 0.1 does the trick. This means that 0.1000000000000000055511151231257827021181583404541015625 and 0.10000000000000001 and 0.1 are the same, at least as far as their floating-point representations are concerned.

Continue reading “The Shortest Decimal String That Round-Trips: Examples”