Converting Floating-Point Numbers to Binary Strings in C

If you want to print a floating-point number in binary using C code, you can’t use printf() — it has no format specifier for it. That’s why I wrote a program to do it, a program I describe in this article.

(If you’re wondering why you’d want to print a floating-point number in binary, I’ll tell you that too.)

Continue reading “Converting Floating-Point Numbers to Binary Strings in C”

A Simple C Program That Prints 2,098 Powers of Two

To write a computer program to print the first 1000 nonnegative powers of two, do you think you’d need to use arbitrary precision arithmetic? After all, 21000 is a 302-digit number. How about printing the first 1000 negative powers of two? 2-1000 weighs in at a whopping 1000 decimal places. It turns out all you need is standard double-precision floating-point arithmetic — and the right compiler!

Continue reading “A Simple C Program That Prints 2,098 Powers of Two”

Print Precision of Floating-Point Integers Varies Too

Recently I showed that programming languages vary in how much precision they allow in printed floating-point fractions. Not only do they vary, but most don’t meet my standard — printing, to full precision, decimal values that have exact floating-point representations. Here I’ll present a similar study for floating-point integers, which had similar results.

Continue reading “Print Precision of Floating-Point Integers Varies Too”

Print Precision of Dyadic Fractions Varies by Language

Interestingly, programming languages vary in how much precision they allow in printed floating-point fractions. You would think they’d all be the same, allowing you to print as many decimal places as you ask for. After all, a floating-point fraction is a dyadic fraction; it has as many decimal places as it has bits in its fractional representation.

Consider the dyadic fraction 5,404,319,552,844,595/253. Its decimal expansion is 0.59999999999999997779553950749686919152736663818359375, and its binary expansion is 0.10011001100110011001100110011001100110011001100110011. Both are 53 digits long. The ideal programming language lets you print all 53 decimal places, because all are meaningful. Unfortunately, many languages won’t let you do that; they typically cap the number of decimal places at between 15 and 17, which for our example might be 0.59999999999999998.

Continue reading “Print Precision of Dyadic Fractions Varies by Language”

Ten Ways to Check if an Integer Is a Power Of Two in C

To write a program to check if an integer is a power of two, you could follow two basic strategies: check the number based on its decimal value, or check it based on its binary representation. The former approach is more human-friendly but generally less efficient; the latter approach is more machine-friendly but generally more efficient. We will explore both approaches, comparing ten different but equivalent C functions.

Continue reading “Ten Ways to Check if an Integer Is a Power Of Two in C”

What Powers of Two Look Like Inside a Computer

A power of two, when expressed as a binary number, is easy to spot: it has one, and only one, 1 bit. For example, 1000, 10, and 0.001 are powers of two. Inside a computer, however, numbers are more generally represented in binary code, not as “pure” binary numbers. As a result, you may not be able to look at the binary representation of a number and tell at a glance whether it’s a power of two or not; it depends on how it’s encoded.

Continue reading “What Powers of Two Look Like Inside a Computer”

Copyright © 2008-2024 Exploring Binary

Privacy policy

Powered by WordPress

css.php